Experimental computer for schools

D. M. Taub, M.Sc., F.B.C.S., C.Eng., F.LLE.E., C. E. Owen, M.A,, F.B.C.S., C.Eng., F.L.LE.E., and

B. P. Day, B.Sc.

Abstract

The computer is a small desk-top machine designed for teaching schoolchildren how computers work
and how to use them. It works in decimal notation and has a powerful instruction set which includes
3-address floating-point instructions implemented as ‘extracode’ subroutines. Addressing can be absolute,
relative or indirect. For input it uses a capacitive touch keyboard, and for output and display, a perfectly
normal t.v. receiver is used. Another input/output device is an ordinary domestic tape recorder, used
mainly for long-term storage of programs. To make the operation of the machine easy to follow, it can
be made to stop at certain stages in the processing of an instruction and automatically display the contents
of all registers and storage locations relevant at that time. The paper gives a description of the machine
and a discussion of the factors that have influenced its design.

1 Introduction

In a little over 20 years, the digital computer has
developed from a promising university project into one of
the most important tools in science, industry, commerce and
government. The use of computers is now growing at such
a rate that within a few years every educated person will
need to know something of how they work and how to use
them.

Many teachers think that the basis of the subject should
be taught while a child is still at school, and they have already
taken the first steps in this direction. Children at primary
schools already learn the essentials of the binary numbering
system and binary arithmetic, but the subject of computers
is probably too complex to be tackled in any depth until a
child reaches secondary school.

Here, two different approaches have so far been tried. One
is to introduce the subject from the physics standpoint
through simple logic circuits, binary counters and adders. This
is valuable in teaching children how the basic elements of a
computer work, but in the time available it would be
impossible to cover the organisation of a complete machine
in the same detail.

The other approach concentrates on how computers are
used, rather than how they work. Children are taught simple
mathematical programming using one of the problem-
oriented languages such as ALGOL or FORTRAN. Again, this
is useful material; it encourages clear thought and precise
expression, and gives a great stimulus to the mathematics
course.

This approach too has its drawbacks. The main one is that
the user remains isolated from the machine. It is possible for
him to get results in a problem-oriented language without
knowing anything about the machine itself; in other words,
the machine remains a ‘black box’.

The second drawback concerns expense. Very few schools
can afford a machine large enough to process problem-
oriented languages. This means sending the children’s pro-
grams away, perhaps to a university or local-authority
computer and, by the time they have been punched onto
cards or tape, run on the computer and the results sent back
to the school, several days will have passed. A child, like any
other beginner, generally needs a few attempts before his
program runs correctly, and the succession of delays can
easily make him lose interest. A way round the problem is
to put a computer terminal into each school and connect it
online to a central machine, but this is expensive, and likely to
remain so for some time.

In a sense, the two approaches just described represent
extremes. The first considers only the fine detail of a machine
and does not go as far as looking at the machine as a whole.
The second, as far as it considers the machine at all, treats
it as a single unit: a means of getting results.

The best approach, when it comes to understanding the

Paper 6069 E, received 23rd October 1969
The authors are with IBM UK Laboratories Ltd., Hursley Park,
Winchester, Hants., England

PROC. IEE, Vol. 117, No. 2, FEBRUARY 1970

computer itself, probably lies halfway between. The computer
is first presented as a simple assembly of store, arithmetic
unit, input and output devices, and control unit. The student
starts to write programs in terms of this machine, and, as he
progresses and needs more facilities, the picture of the
machine is gradually built up to show how each facility is
added. After dealing with very simple programs, branching
is introduced, and later, indirect and relative addressing, and
subroutine linkage. Essentially, the idea is that the student
builds up his knowledge of the machine at the same time as
he learns how to use it.

The success of this approach depends very much on having
the right kind of machine available. What is needed is a
machine which can be made to appear very simple at first,
but which has the more advanced features available when
the student is ready for them. Perhaps most important of
all, however, it must be so designed that the student can
follow exactly what the machine is doing; this means paying
special attention to the display.

Apart from the use already outlined, a computer of this
kind would be a valuable demonstration tool in the mathe-
matics course. There are several important topics that can
only be touched on at present because they call for too much
computation; e.g. iterative processes, summation of series and
numerical integration. A machine with good display facilities
would allow these topics to be presented much more vividly.

During the past few years, we have been developing a
machine along the lines proposed. The first prototype! was
built in 1967 and teachers’ reactions to it were very
encouraging. Since then, six more models have been made
and are now on loan to a group of schools for a year’s
thorough field trial. The aim is to use them in as many
different types of school as possible and with children of
widely differing abilities. In this way, we hope to find out
whether the suggested approach is in fact sound.

The purpose of this paper is to describe the machine and
to discuss the factors on which its design is based.

2 Main features

The design of the machine was strongly influenced by
three factors:

(a) It had to be cheap, or schools would not be able to afford it.
(b) It had to be easy to use.
(¢) It had to have very good display facilities.

One way of keeping the cost down was to restrict the size of
the store. This meant that the machine would not be able to
run compiler programs, and programming would have to be
done either in machine language or in a language that could
be translated very easily into machine language.

Bearing this in mind, one of the main factors contributing
to (b) and (¢) was to design the machine to work in decimal
notation. The input and the display are both in conventional
decimal form, though within the machine a binary-coded
decimal representation is used.

303

21 Basic instructions and ‘extracode’ instructions
The main parts of the machine are a store, a group
of registers, and an adder/subtractor unit. The instruction set
contains instructions for moving data between the store and
registers and for carrying out addition, subtraction, shifting
and testing operations on the register contents.
Using the basic instructions, any of the more complex
processes such as floating-point division can be built up. It

Fig. 1
Complete installation

would be very tedious though if every program had to be
written at such a detailed level; so the machine also has a
set of 3-address floating-point instructions. These are imple-
mented in the same way as the ‘extracode’ instructions used
in Atlas;’ i.e. by automatically calling subroutines of basic
instructions held in a part of the store specially provided for
the purpose.

When programming is done in extracode instructions, the -

machine is arranged to appear to the user as a 3-address
machine; i.e. it does not display any of the detailed inter-
register operations that are taking place. These are displayed
only when the machine is programmed in basic instructions.
The machine can thus be presented to the student at two
quite different levels of detail, which should be a valuable
feature. Experience so far suggests that the computer will be
used mainly at the extracode level, and that students will not
do much programming in basic instructions until they have
reached a more advanced stage.

2.2 Keyboard input, t.v. output

The input and output were made as simple and inex-
pensive as possible. For the initial input of programs and
data, the machine has a keyboard using capacitive touch keys.
Their main advantage over ordinary contacts is ruggedness,
making them more able to stand up to school use.

For output and display, the machine uses a perfectly normal
television receiver. This has a number of very attractive
features:

(a) The t.v. set is mass-produced, and is therefore very much
cheaper than a specialised piece of computer hardware.

(b) It is cheaper to maintain because skilled people can be
found wherever there is a t.v. service.

(¢) The screen is large enough to be used for demonstration
to a whole class.

23 Tape recorder

Another input/output device used by the machine is
an ordinary domestic tape recorder. When a teacher wants
to load a demonstration program at the beginning of a lesson,

304

it would take too much time if he always had to enter it via
the keyboard. Therefore, having entered it once, he can
record it on tape and reload it into the machine whenever
he needs it. The tape recorder can be useful too if a class is
doing a piece of work that cannot be completed in a single
lesson. At the end of the lesson, the contents of the whole
store are recorded, leaving the machine free for use by another
class. When the first class is ready to resume work, the store is

reloaded. As far as cost and maintenance are concerned, the
tape recorder has the same attractions as the television set.

The computer, its t.v. set and tape recorder are illustrated
in Fig. 1.

3 Machine organisation

The information given in this Section relates to the
machine as it appears to the user, rather than to the engineer-
ing implementation. For example, the main store and the
various general-purpose and special-purpose registers are
listed separately, though in fact they are all housed in the
same matrix of magnetic cores. Also, the word length in the
main store is given as eight decimal digits, but, as far as
implementation is concerned, only one decimal digit is read
or written at a time. Details of the engineering implementation
are given in Section 7.

31 Main store

The main store has a capacity of 200 words, each being
eight decimal digits long. The first hundred words (addresses
0 to 99) are for users’ programs and data, and the second
hundred (addresses 100 to 199) are for the subroutines that
implement the extracode instructions.

3.2 Data format

The way in which the eight digit positions in a word
are used depends on whether the word represents an instruc-
tion or a piece of numerical data. When it represents an
instruction, all eight positions store decimal digits. When it
represents a number, the first digit position stores the sign,
the second stores the number of decimal places, i.e. the
negative of the exponent, and the remaining six store the
significant digits. The format is shown in Fig. 2a.

The number of decimal places can have any value from 0
to 6. Thus, numbers can normally range from —999999 to
4999999, the smallest finite number being +0-000001.

This range is much less than in most computers, but
teachers consider, and experience has so far confirmed, that

PROC. IEE, Vol. 117, No. 2, FEBRUARY 1970

it is quite enough for school use. Numbers outside the range
can be handled, but not so conveniently (see subcaption to
Table 3). Negative numbers are always handled in ‘sign and

digit position
t-2 3 4 5 6 7 8

T
T number significant
Sgn._— o digits
decimal
places

I 2 3 Motbuibrad a8

osstor:d:I—l2]6|8|l[4]3l7|

as displayed : 6 -0 | 4¢3 3 —
b

Fig. 2

Data format

a Allocation of digit positions

b Example

modulus’ form to save the user from having to concern
himself with complement notation.

Although numbers are stored as an integer and exponent,
provided they lie within the normal range of the machine,
they are entered on the keyboard and appear on the display
in conventional form, with the decimal point in the appro-
priate place. Any negative sign is keyed in after the least
significant digit and is displayed at the right-hand end (see
Fig. 2b). Positive signs are not keyed in and do not appear
on the display.

3.3 General-purpose registers

There are 10 general-purpose registers Ro-Rg. Ro—
R, are single-length registers, each storing a sign and six
decimal digits, and Rg and Rg are double-length registers,
each storing a sign and 12 decimal digits.

3.4 Transfers between main store and registers

The general-purpose registers hold numbers only in
integer form. Therefore, when transferring a number from
the store to the registers, the integer and exponent portions
have to be separated. This is done as follows:

(a) The READ STORE instruction causes the integer and sign of
the required word to be copied into R, and the exponent
into Ry

(b) From that point onwards, they are manipulated separately
using the register instructions (see Section 4.1).

(¢) When a number is to be written back into the store, the
integer must first be set up in R, and the exponent in R,

(d) The basic STORE DATA instruction combines the contents
of these registers and writes them in the specified storage
location according to the format of Fig. 2.

The above arrangements apply only to numerical data.
When a student reaches a more advanced stage, he may want
to carry out operations on instructions, and the machine has
been designed to make this possible. The necessary transfers
between store and registers still take place via Ry and Ry,
but the storage word has now to be split in a different way.
Details of how this is done are given in Table 7.

3.5 Modifier registers

Registers R3, R4 and Rs serve a dual purpose. As well
as being general-purpose registers, they can be used as modifier
registers. For basic single-address instructions, the instruction
code specifies which of them, if any, is to be used. For
3-address instructions with relative addressing, the first
address is modified by the contents of Rj, the second by the
contents of R, and the third by the contents of Rs.

3.6 Keyboard register
All numbers and instructions entered on the keyboard
are first held in the keyboard register. From here they can be

PROC. IEE, Vol. 117, No. 2, FEBRUARY 1970

transferred to various'parts of the machine, depending on
how they are to be used (see Section 6).

< Instruction address registers

The machine has a slightly more elaborate arrangement
than usual for keeping track of instruction addresses. Besides
the normal instruction address register (i.a.r.), which holds
the address of the next instruction to be fetched from the
store, there is an auxiliary register which holds the address of
the instruction currently being processed. The auxiliary
register plays no direct part in the operation of the machine,
but it helps the user when he is following through a program,
instruction by instruction.

As soon as an instruction has been fetched from the store,
its address is transferred from thei.a.r. to the auxiliary register
and remains there until the following one has been fetched.
Thus, when an instruction has just been completed, the dis-
play can show the address from which that instruction was read
(held in the auxiliary register) and the address of the follow-
ing one (held in the i.a.r.). This is especially valuable for
BRANCH instructions.

3.8 Instruction register

The instruction register holds the instruction currently
being processed.

3.9 Address registers

When relative or indirect addressing is used, the
absolute address (or addresses, in the case of 3-address
instructions) will be different from the address portion of the
instruction; hence the need for extra address registers. There
are three of these to cater for the 3-address case.

3.10 Link register

This is used for temporary storage of the link address
in BRANCH AND LINK instructions. The basic instruction set
includes an instruction for transferring its contents into the
main store (Table 7).

3.11 Control latch

The control latch is a single-bit register that is set to
0 or 1 in response to TEST instructions on the contents of
registers. The basic CONDITIONAL BRANCH instructions test
the state of this latch to determine whether or not branching
will take place.

4 Instruction set

As already mentioned, there are two main types of
instruction:

(a) basic instructions
(b) extracode instructions

The basic instructions consist of four decimal digits each,
and are stored two to a word as shown in Fig. 3(i). The extra-
code instructions have eight digits each and are stored one
to a word as shown in Fig. 3(ii).

digit position

et T s 6 T8

lolblc]d u[b c dl
one one
instruction

instruction

(i)

DTl LT Tl

(i)
Fig. 3
Arrangement of instructions in store

(i) Basic instructions: 2 per word
(ii) Extracode instruction : 1 per word

305

The basic instructions can be subdivided into

(i) single-address instructions for moving data into and out
of the store and for branching

(i) register instructions for operating on the contents of
registers. .

The type of instruction is determined by the first digit a as
shown in Table 1. This digit also shows how the remaining

Table 1
INTERPRETATION OF DIGIT a

Q

Type of instruction

}Register instructions

N

|
}Sing]e—address instructions

VO ANUNPBWN —O

|
J
]
jL3 -address extracode instructions

digits are to be interpreted, and, for single- and 3-address
_instructions, the type of addressing to be used; i.e. whether
absolute, relative or indirect.

Details of the different types of instruction are given in
Sections 4.1-4.3 and Tables 1-10. For brevity, the contents
of a particular register or storage address are indicated by
placing brackets round the register or address designation.
Thus (R;) means ‘the contents of Rj’, and (25) means ‘the
contents of storage location 25°. The arrow < is used as
an assignment symbol. Thus, (R, < (R,) + d means: set
the contents of R, to the sum of its existing contents and d.

41 Register instructions

In register instructions, digit b always specifies the
operation and c a register number. The interpretation of digit
d depends on whether a is 0 or 1, as shown in Table 2. The
Table 2
INTERPRETATION OF DIGITS IN REGISTER INSTRUCTIONS

a b c d

(b £ 5 Hiendl®
b = 5: condition to be tested
(see Table 4

N

|
]LOperation Register number<‘
J L |register number

* In this case d is used simply as a numerical digit, it is not used as a code

Table 3
REGISTER INSTRUCTIONS: OPERATIONS
Operation
b a=0 a—1
0 (Re) < (Re) + d* (Rc) ~% (Rc) “+ (Rd)
1] (R)<(Re) —d (Re) < (Re) — (Ra)
2] (Rg)«<d—(Ro) (Re) <= (Ra) — (Re)
3] Ro)«d (Ro) < (Rg)
4| Not used Copy the sign and right-hand
six digits of Ry into R
5| Test (R) for the condition | Not used
specified by d (see Table 4).
If the condition is satisfied,
set the control latch to 1, if
not, set it to 0
6 | Left-shift (R¢) by d places Left-shift (R;) by (Rg) places
7| Right-shift (R.) by d places | Right-shift (R¢) by (Ry) places
8 | Not used Not used
9| Not used Stop and display (R.) and (Ry)

* 0000 is effectively a DO NOTHING instruction

T This instruction is used when one wishes to transfer the complete contents of
a double-length register into the main store, for example, when working to more
than 6-digit accuracy. The right-hand six digits would be copied into R; and
from there into a storage location. The left-hand six digits would then be shifted
six places to the right, copied into Ry, and stored in a second location

306

Table 4
TEST CONDITIONS USED IN REGISTER INSTRUCTIONS

d Condition

0 (Ro)—=0

1 (Ry) =10

2 Re) <0

3 Extreme left-hand digit of R, = 0
4 Extreme right-hand digit of R, = 0

Table 5
EXAMPLES OF REGISTER INSTRUCTIONS

Instruction

Gaile Meaning
0137 Subtract 7 from the contents of R3
1351 Copy the contents of Ry into Rs

0542 If the content of R4 is less than 0, set the
control latch to 1, otherwise set it to 0

various operations are listed in Tables 3 and 4, and some
examples are given in Table 5.

4.2 Single-address instructions

The format of single-address instructions is shown in
Fig. 4(i). Digit a specifies the type of addressing (discussed
later), b the operation, and ¢ and d an address. Digits ¢ and d

tens and units digits
of presumptive address

type of
addressing

operation

(M

DS Dadens
T e e e ey
type of A pl Apz Ap:-l

addressing

operation
(i)
Fig. 4

Instruction formats

(i) Single-address
(i) 3-address

cannot specify an address completely, however, as they can
define only 100 locations, whereas the main store has 200 (see
Section 3.1). Therefore ¢ and d are taken, respectively, as
the tens and units digits of the address, and the hundreds
digit is taken from the hundreds digit position of the i.a.r.

This effectively divides the store into two areas, locations
0-99 and 100-199, and an instruction stored in either of these
areas will always refer to an address in the same area. Users’
programs are restricted to locations 0-99, and so they always
refer to an address in which the hundreds digit is zero. To
the user, therefore, the ¢ and d digits of an instruction represent
the complete address.

When relative or indirect addressing is used, the address

Table 6

FORMATION OF ABSOLUTE ADDRESS IN SINGLE-ADDRESS
INSTRUCTIONS

a Type of addressing Ag

2 Absolute A,

4 }Relative { Ap + (Ry)
5 J L|Ap + (Rs)
6 Indirect (Ap)

Ap is the presumptive address; i.e. the address specified in the instruction
the absolute address

PROC. IEE, Vol. 117, No. 2, FEBRUARY 1970

Table 7
SINGLE-ADDRESS INSTRUCTIONS: OPERATIONS a = 2-6
INCLUSIVE

b Operation

0 | Copy (Ap) into Ry and R; as follows (see Fig. 1). If A, contains
data (recognisable by a sign in digit position 1), copy the
exponent digit into Ry and the sign and significant digits into
R;. If A, contains an instruction (recognisable by a decimal
digit in position 1), copy the left-hand four digits into Ry and
the right-hand four digits into R;

1 | Store (Rg) and (R;) in location A, in data format; i.e. copy (Ro)
into the exponent position, and copy (R;) into the sign and
significant digit positions. If the number is outside the range
that can be held in a storage location, set the ERROR indicator
and stop

2 | Store (Rp) and (R;) in location A, in instruction format; i.e.
copy (Ry) into the left-hand four digit positions and (R;) into
the right-hand four digit positions

3 | Not used

4 | Unconditional branch to A,. Store link address in link register*

5 | Branch to A, if control latch is set to 1. Store link address in
link register

6 | Branch to A, if control latch is set to 0. Store link address in
link register

7 | Store the contents of the link register in A,

8 | Input

Stop to allow the operator to enter data. When the machine is

restarted, transfer the contents of the keyboard register
into A,

9 | Display

Stop and display (Ag)

* When two basic instructions are stored in one storage location, branching can
take place only to the first of them [see Fig. 3(i)]

Table 8
EXAMPLES OF SINGLE-ADDRESS INSTRUCTIONS

Instruction

code Meaning

2179 Store (Ry) and (R;) in location 79 in data format
4513 Form the absolute address A, by adding (R4) to 13.
Branch to A, if the control latch is set to 1

6984 Read (84) to determine A,. Stop and display (A,)

given in the instruction is not the same as the absolute
address of the operand. The procedure for forming the
absolute address is shown in Table 6. The address given in
the instruction (i.e. the ¢ and d digits and the hundreds digit
of the i.a.r.) is known as the presumptive address A, and
the absolute address is denoted by A,,.

There is a safeguard built into the machine to prevent
presumptive addresses in the range 0-99 from giving rise to
absolute addresses greater than 99. The reason is that users’
programs must not be allowed to write into locations 100-199;
they could otherwise overwrite the extracode subroutines
stored there. For relative addressing, the safeguard is provided
by ignoring any carry from the tens digit position when address
modification takes place, and for indirect addressing, the
safeguard is provided by taking only the tens and units digits
of (A)).

The single-address operations are listed in Table 7 and a
few examples given in Table 8.

4.3 3-address extracode instructions

The format for the 3-address instructions is shown in
Fig. 4(ii). The digit a specifies the type of addressing as shown
in Table 9, and b specifies the operation. These instructions

Table 9

FORMATION OF ABSOLUTE ADDRESSES IN 3-ADDRESS
EXTRACODE INSTRUCTIONS

a Type of addressing Aai Aa2 Aa3

7 Absolute Ap1 Ap> Ap3

8 Relative Ap1 + (R3) | Apz + (Ry) | Aps + (Rs)
9 | Indirect (Ap1) (Ap2) (Ap3)

Apt, Apy and A,; are the three presumptive addresses
Aqi1, Ag: and Agj are the corresponding absolute addresses

PROC. IEE, Vol. 117, No. 2, FEBRUARY 1970

and their operands may be held only in locations 0-99 of
the store; therefore only two digits are needed to specify eacn
address. The digits ¢ and d are the tens and units digits ot
the first address, e and f the second address, and g and %
the third. Absolute addresses greater than 99 are barred,
as in single-address instructions.

The way the machine carries out an extracode instruction
is by automatically branching to a subroutine held in storage
locations 100-199. Before branching takes place, the absolute
addresses are determined and stored in locations 100, 101
and 102, respectively, as shown in Table 10, and the link

Table 10
ENTERING AND RETURNING FROM EXTRACODE SUBROUTINES

Address Contents
100 Aa
101 Anp
102 a3
103 Link address
110 2703 2420
111 2703 2421
112 2703 2445
eic:
120 First instructions in routine called by b = 0
121 First instructions in routine called by b = 1
145 First instructions in routine called by b = 2
190 6403 0000; i.e. return to main program

address is stored in the link register. Branching then takes
place to an address formed by adding 110 to the & digit of
the instruction. Thus, if » = 0, branching takes place to 110,
if b =1 branching takes place to 111 etc. All the above
operations take place automatically; they do not have to be
programmed by the user.

The first instruction in the branch location moves the link
address into a storage location. In the example in Table 10,
the link address is moved into location 103, but the person
writing the routines could choose any location from 103 to
199. The second instruction branches to the beginning of the
appropriate routine. During the routine, the operands are
obtained by indirect addressing using the presumptive
addresses 100, 101 and 102, and when returning to the main
program the link address is obtained in a similar way.

The subroutines can be written into the store from the

Table 11

SUGGESTED EXTRACODE OPERATIONS FOR FLOATING-POINT
CALCULATIONS

b Operation

0 (Aal) = (AaZ) + (AaS)

1 | (Aa) < (Ag2) — (Ag3)

2 (Aal) s (AaZ) X (Aa3)

3 | (Aa1) < (Ag2) = (Ag3)

4 Branch to Ag; if (Ag) = (Ag3)

5 Branch to Ag; if (Agz) > (Agz)

6 | Branch to Ag if |[(Ag)| > |(Ag3)|*

7 | If (Ag3) # 0, branch to A, and store link address in Ag,
8 Input and display

Stop, to allow the operator to enter data. When the machine
is restarted, transfer the contents of the keyboard register
into A4;. While the machine is stopped, it displays (Ag1),
.(Aa2) and (Ag3)

9 Display

Stop and display (Ags1), (Ag2) and (Ag3)

a=17 8or9
* This instruction is useful for determining whether a computation has been
carried to a required degree of accuracy

307

keyboard; therefore the user is perfectly free to choose his
own extracode operations as long as the subroutines will fit
into the available storage space. At a more advanced stage,
users will sometimes want to do this, but, for the general run
of mathematical work, practically every need can be met by
the suggested set of floating-point operations listed in
Table 11.

5 Data-flow diagrams

Figs. 5 and 6 show the main parts of the machine
and the data-flow paths. They represent the machine as it
appears to the user; in other words, the paths shown do not
necessarily correspond to electrical connections.

Figs. 5 and 6 show how the machine appears when using
basic and 3-address instructions, respectively. Fig. 6 is the

Y

keyboard

- o N

CONLI
instruction latch

control unit

£ hands V- | condition
control signals signal

adder /

subtractor

X

-

display

f

from special-purpose
registers and control unit

y
]
g
°
°
—
store

data

i

2

E
{3

| R

o

Fig. 5
Main data-flow paths used in basic instructions

simpler of the two, but even this would appear complicated to
a schoolchild meeting it for the first time. The suggestion is,
therefore, that the diagram should be built up step by step
as the child’s knowledge of the machine increases. This is the
approach taken in Reference 2.

6 Operating the machine

In operating the machine, the keyboard and display
play a dominant part. The keyboard is used for controlling
the machine and for loading programs and data. The display
serves as the main output device and also enables the user to
follow in detail what the machine is doing.

The keyboard layout illustrated in Fig. 7, shows that the
keys fall into four groups. The left-hand group consists of
control keys used for inspecting and loading the store, and
for loading the i.a.r. with the starting address of a program.
The second group from the left consists of numeral, sign,
decimal point and ‘clear’ keys for setting up numbers in

308

the keyboard register. The third group is used when running
programs, and the fourth is used when recording or playing
back from a tape recorder.

The display consists of six rows, each containing 15 charac-
ter positions. The format is variable and depends on the

keyboard

keyboard register

b BB

control

/—Linstrud on reqister unit
Tl o et fsIn I —
i S D Sl 9 B T

control
b=t address register | Sigeals
g address register 2
condition
A signal
'

A

auxiliary i.a.r,

from registers
and control unit

arithmetic
unit

L <

W

e store et
address data
Fig. 6

Data-flow paths used in 3-address instructions

operation being carried out. In designing it, the principle was
to show everything that is relevant at the time and no more.

Sections 6.1-6.7 describe how the keyboard and display
are used.

6.1 Inspecting contents of the store

To see what is in a particular storage location, the
operator first touches the NORMAL RESET key which clears the
display, apart from the i.a.r. which is shown at the left of the
top row (Fig. 8a). The operator then keys in the address
whose contents he wishes to know; this appears in the key-
board register shown at the right of the top row (Fig. 8b).
He then touches the LOAD ADDR key which transfers the
keyboard register contents into an address register. This
register is displayed at the left of the bottom row, and the
contents of the required location is shown at the right, as
shown in Fig. 8c.

A second address may now be keyed in the same way, or
if the operator wants to see what is in a neighbouring location,
he can use the INCR ADDR and DECR ADDR keys. These respec-
tively increase and decrease by one the contents of the
address register.

6.2 Loading the store

Loading a storage location is a simple extension of
the procedure given in Section 6.1. The existing contents of
the location are displayed first (Fig. 8¢), and then the number
or instruction to be loaded is keyed into the keyboard register
(Fig. 84). Touching the LOAD STORE key transfers this number

PROC. IEE, Vol. 117, No. 2, FEBRUAR Y 1970

into the required location replacing what was there before
(Fig. 8e).

To load consecutive locations, as for example, when loading
a program, the first location is loaded as above. The INCR
ADDR key is then touched and the second location loaded etc.

6.3 Loading the i.a.r.
When a complete program has been loaded, the i.a.r.
has to be set to the address of the first instruction. To do

Fig.7
Keyboard
contents of
contents of i.ar. keyboard register
a b
number to be loaded
25 25 819:43
addres: 10 3-75 contents 10 3.75
() d
25
new
10 819-43 contents

Fig. 8
Displaying and replacing contents of a storage location

a After resetting

b After keying in address

¢ After touching LOAD ADDR key

d After keying in number to be loaded
e After touching LOAD STORE key

this, the operator enters the address into the keyboard
register (Fig. 9a) and then touches the LOAD I1AR key to
transfer it to the i.a.r. as shown in Fig. 95.

6.4 Displaying individual instructions

One of the main uses of the display is to allow the
operator to follow the operation of the machine as each
instruction is processed. Designing a suitable display pre-
sented problems; the main one was how best to accommodate
the large amount of relevant information. For instance, one
has to display the instruction itself and the address from which

PROC. IEE, Vol. 117, No. 2, FEBRUARY 1970

it was read, and, in relative and indirect addressing, the data
from which the absolute addresses are determined; e.g. the
contents of modifier registers. There are also the absolute
addresses themselves and their contents before and after the
instruction is carried out.

To put all this information on the screen at one time would
be far too confusing. What is done, therefore, is to make the
machine stop at certain stages during the processing of an
instruction, and display what is relevant at that stage. At

existing contents__
of iar.

address of Ist
instruction in
program

last instruction
loaded

7981 4907

new contents 32
of Lar

65 79814907

b
Fig. 9
Loading i.a.r.

a After keying in address of first instruction in program
b After touching LOAD IAR key

stage A, the instruction has been fetched from the store and
loaded into the instruction register. At stage B, the absolute
addresses have been determined, and at stage C the instruction
has been carried out and the i.a.r. set to the address of the
next one.

As an illustration, consider the instruction 9320 2422—a
floating-point divide instruction using indirect addressing. To
process the instruction up to stage A, the operator touches
the A key. The display then appears as in Fig. 10a. The i.a.r.
is not shown at this stage, and so the top row is blank. At the
left of the second row is the auxiliary i.a.r. showing the
location from which the instruction was read. To the right
of this is the instruction register showing the instruction
itself, and to its right, the stage character A indicating the
stage reached. Row 3 is blank. At the left of rows 4, 5, and
6 are the presumptive addresses, and to the right of each
are the contents of the respective locations, in other words,
the absolute addresses. If the instruction had called for relative
addressing, the modifier register designations R3, R4, and
RS would have appeared at the left of these three rows, and
their contents to the right. With absolute addressing, the three
rows would have been blank.

Touching the B key then processes the instruction up to
stage B (Fig. 10b). The stage character changes to B, but,
apart from this, the top two rows remain as they were. At
the left of rows 4, 5, and 6 are the absolute addresses, and to

309

the right of each the existing contents of that location; i.e.
before the instruction is carried out.
To complete the instruction, key C is touched. The stage

address of current instruction

instruction
stage
row
number
absolute
addresses
presumptive
addresses o
stage

The number in
location 3is left
over from some
previous use
absolute addresses

D b ¢

contents

address of
next instruction

9-38261
-026415-

Fig. 10
Instruction display

a Stage A
b Stage B
¢ Stage C

character changes to C (Fig. 10c) and the result of the division
appears opposite the relevant address in row 4. The i.a.r.
reappears in its allotted place at the left of row 1 showing the
location of the next instruction.

There is no need to make the machine stop at all three
stages. If the operator touches the B key, the instruction will
be processed up to stage B, and if he touches the C key, it
will be processed to completion:

Single-address and register instructions can be displayed
similarly, as shown by the examples in Fig. 11. Note that

17A
19 3864 A 17 2068
R3 5 68 821-346-
RO 3
821346~
a

19
18A 1089 C
R8

8017 443168
R9

1601724

Fig. 11
Typical display of single-address and register instructions

a Single-address instruction with relative addressing
b Single-address READ STORE instruction

¢ TEST instruction

d Adding contents of two double-length registers

with register instructions, row 3 is used as well as rows 4, 5,
and 6. With single-length registers, the register designation
and contents always appear on the same row, but with
double-length registers there would not be enough room; the
contents are therefore shown on the row below the designation
(Fig. 114d).

310

6.5 Running at full speed

When the operator wants to run the machine at full
speed without displaying individual instructions, he touches
the RUN key. The machine then runs until one of the following
happens:

(@) An INPUT or DISPLAY instruction is reached. With an INPUT
instruction the machine stops and displays at stage B to
allow the operator to enter data on the keyboard; with a
DISPLAY instruction, it stops at stage C.

(b) The operator touches the stop key. The machine stops
and displays at stage C of the current instruction.

(e) The machine tries to carry out an invalid instruction. If
an instruction code does not correspond to a valid
instruction, the machine stops and displays the ERROR
symbol (a black rectangle) in place of the stage character.

(d) An overflow is encountered. The machine stops and
displays the ERROR symbol as above.

The display shows immediately whether the error arose from
an overflow or from an invalid instruction.

6.6 Obeying instructions directly from keyboard

For demonstration purposes, it is sometimes useful to
be able to obey an instruction directly from the keyboard
rather than first putting it into a storage location. To do
this, the operator touches the K1 RESET key; this clears the
display in the same way as the NORMAL RESET key, except
that the letter Kk appears on row 2 immediately below the
i.a.r. An instruction can then be keyed in, and, on touching
the A, B or C keys, it will be transferred directly from the
keyboard register to the instruction register and processed
up to the required stage.

6.7 Using the tape recorder

The contents of the store can be recorded on tape for
later use as mentioned in Section 2. To do this, the operator
first holds his finger on the NORMAL RESET key. In addition
to the action already described, this produces a steady tone
output to the tape recorder so that the correct recording level
can be set. He then starts the recorder and touches the pump
key. The contents of each store location are then read out in
turn, converted into coded tone pulses and sent to the
recorder. The process takes 32s. While this is happening, the
addresses and their contents are displayed on row 6 of the
screen so that the operator can see when the process is
complete.

As soon as the recording has been made, it must be checked
in case the recording level was wrong or the tape faulty. The
tape is rewound, playback is started and the CHECK key is
touched. This checks the recorded data against the store
contents, and if they disagree, the ERROR symbol is displayed.

Reloading the store is done similarly, except that the
operator touches the RELOAD key instead of the CHECK key.
The display during checking and reloading is the same as
during recording, and all three processes take the same time.

7 Engineering implementation

741 Store

One of the main ways of keeping down the cost of the
machine was, wherever possible, to locate the various general-
purpose and special-purpose registers in the same core matrix
as the main store. This tends to limit the speed, but is very
much cheaper than using transistor or integrated-circuit
registers.

The matrix stores a total of 1760 4-bit characters, of which
1600 are used as the main store and the remainder as registers.
Characters are read and written one at a time, the four bits
of each character being handled in parallel.

The cycle time of the store depends on the particular t.v.
standard used for display (see Section 7.3). The field-trial
models use the 405 line, 50field/s standard which calls for a
cycle time of 4:92us. The other commonly used standards,
525 line, 60field/s and 625 line, 50field/s, would need a cycle
time of 3-16 us.

PROC. IEE, Vol. 117, No. 2, FEBRUARY 1970

1.2 Data-flow diagram

A simplified data-flow diagram is shown in Fig. 12.
With the main store and registers sharing a single matrix,
it can be seen that many of the basic operations consist of
copying digits from one location in the matrix to another,

from the store and held in register D (Fig. 12). The timing-
pulse circuits indicate which row of elements is being painted,
and their output and that of the D register are sent to the
character generator which produces the appropriate modu-
lating waveform. It takes two line scans to paint a row of

t.v. synchronising pulses

(

control
([:F T unit

operation register

8 bit
o bie
control signals
address address | 5 | store
registers gates

f

¥

timin ulse character r.f. oscillator
whaek = cigcu'l)ts generator and modulator

to t.v.set

to tape recorder

data
registers

(4 vits)

to control circuits gddcr/
f subtractor
keyboa rd t (5
Fig. 12

Simplified data-flow diagram

or carrying out arithmetic on the contents of two locations.
This is the reason for the two address registers A and B in
the diagram.

All characters read from the store pass into the 4-bit
register D. If they need to be saved for use during a later
storage cycle, as for instance in arithmetic operations, they
are held in a second 4-bit register E. Register F is an 8-bit
register that holds the first two digits @ and b of an instruction.
The output of this register is gated with the timing waveforms
to produce the internal control signals and the signals needed
to control the display. The contents of the F register determine
the display format, and the timing pulse circuits supply the
line and field synchronising pulses for the t.v. receiver.

1.3 Display system

A basic requirement of the display system was that
it should use a perfectly normal t.v. receiver with no modifica-
tion whatever. This means that the computer has to supply an
r.f. signal conforming to the t.v. standard of the country
where it is used.? The field-trial models have been built to
work with the 405-line, 50field/s standard, but the design is
such that they could be changed to the 525- or 625-line
standards without much difficulty.

The only departure from normal practice is that no interlace
is used; it was found to be an unnecessary expense. Thus, on
the 405-line standard, the number of lines in the transmitted
picture allowing for the field-blanking period is about 178.

The displayed characters are built up from a pattern of
elements in a 7 X 5 array. On the 405-line standard, each
element has a height corresponding to 2 line scans; on the
525- and 625-line standards the height would correspond to
3 line scans. .

Compared with other methods of display, the essential
point about using a t.v. raster is that the electron beam does
not ‘paint’ one character completely before moving on to
the next. When painting a row of characters, it first forms the
topmost row of elements in all the characters along the row,
then the second row of elements etc. Just before the beam
reaches a particular character position, that character is read

PROC. IEE, Vol. 117, No. 2, FEBRUARY 1970

elements completely and the characters are 7 elements high;
therefore every character on the display has to be read from
the store a total of 14 times during each field period.

The output from the character generator and the synchro-
nising pulses are combined with the output from a crystal-
controlled oscillator using a Schottky-barrier diode modulator.
The resulting signal is attenuated to a level of about 2mV
in 75Q, corresponding to the signal that would be obtained
about halfway between a t.v. transmitter and the fringe of its
service area.

1.4 Tape-recorder link

When the contents of the store are being recorded,
characters are sent to the tape recorder at the rate of one per
field period. At the beginning of each field period, a tone
pulse of about 2kHz is transmitted which lasts for v/8 (where
v is the field period). This serves as a ‘start’ pulse. During the
next four v/8 periods, the four bits of the character are
transmitted serially starting with the most significant. If the
bit is 1, a tone pulse is transmitted, and if it is 0, no pulse is
transmitted. During the final three v/8 periods nothing is
transmitted.

This system tolerates quite a wide variation in tape-recorder
speed. Allowing for the tone pulse rise and fall times of
0-6ms, the tape speed during playback must be within
+7-5% of that during recording. The tape speed tends to
vary asymmetrically about its nominal value owing to the
increase of tape slip as the recorder gets older, and so,
expressed in terms of the nominal value, the allowable speed
variation is from +39% to —4-2%. This seems reasonable,
even for battery-driven machines.

1.5 Touch keyboard
The touch keys use the principle of the transistor pump
circuit.# When the operator touches a key, he introduces a
capacitance between the key and earth. This capacitance is
repeatedly charged through a resistor and discharged through
the base—-emitter junction of a transistor, giving rise to pulses
311

of collector current. These build up a charge on a capacitor
in the collector circuit. The circuit is so designed that a finger
capacitance below 3 pF produces no output signal, but 12pF
or more produces a full output signal. Details of the touch-key
circuits will be published separately.

A criticism that has been levelled against touch keys is
that, as no movement takes place, the operator does not
have a positive indication that he has pressed a key success-
fully. This difficulty has been overcome by mounting a small
loudspeaker inside the computer and arranging for it to emit
a tone whenever a key is touched.

7.6 Construction

The logic circuits used in the computer are of the
diode-transistor type. They are hybrid circuits, similar in con-
struction to those used in most of the System/360 machines,
but the number of gates on each circuit module is two to
three times higher. The logic circuits are mounted on one
large board and the core store on a second large board as
shown in Fig. 13. The two boards are hinged to provide access.

Fig. 13
General view with cover removed

The field-trial models are rather larger than a final produc-
tion version would be. This is mainly because a core store of
the correct size was not immediately available, and so the
one fitted is much larger than the machine really needs. The
machine measures 18in wide by 22in long by 9-5in high
and weighs 561b. The power consumption is 240 W.

8 Future work

Field trials of this computer are being carried out
during the school year 1969-70. The trials have two objectives;
to learn more about the aspects of computers and computing
that can usefully be taught to schoolchildren and to assess
the suitability of this particular machine. Initial enthusiasm
has been great, but one must try to discount the element of
it that can be put down to novelty.

312

The machine must be regarded as a first experiment, and
there are no plans to put it on the market. But, if experience
shows our approach to be sound, there are several ways in
which a machine of this type could be developed. For instance,
the range of applications could be extended by making it
handle alphabetic characters as well as numbers.

The factor that must be kept clearly in mind, however, is
price. It is always tempting to make a machine more sophisti-

-

cated, but this must not be allowed to increase the price to a '

level higher than schools can afford. Prospects, however,
are encouraging. The machine consists almost entirely of

semiconductor circuits, and one can confidently expect their

price to fall as manufacturing techniques develop.

9 Acknowledgments

We should like to record our thanks to B. Thwaites,
Director of the School Mathematics Project, J. D. Tinsley,
head of the mathematics department of St. Edward’s School,
Oxford, and Prof. G. Blaauw of the Technische Hogeschool,

Twente, Enshede, Netherlands for their contributions to the
specification of the machine. We should also like to thank
J. Travis, P. Johnson, A. Patten, J. Pike and E. Chamberlain,
who carried out much of the detailed design of the proto-
type and field-trial models, and the directors of IBM UK
Laboratories Ltd. for permission to publish this paper.

10 References

1 TAUB, D. M., and OWEN, C. E.: British Patent Specification 1143327,
Feb. 1969 <

2 TAUB, D. M., and TINSLEY, J. D.: ‘A first course on the schools
computer’ (IBM UK Laboratories, 1969)

3 Documents on the 11th plenary assembly of the CCIR, Oslo,
report 308-1 (ITU, 1966), pp. 217-230

4 HEMINGWAY, T. K.: ‘Electronic designer’s handbook’ (Business
Publications, London, 1966), p. 219

5 SUMNER, F. H., HALEY, G., and CHEN, E. C. Y.: ‘The central control
unit of the Atlas computer’, in POPPLEWELL, C. M. (Ed.): ‘Information
processing 1962” (North Holland, Amsterdam, 1963), p. 657

PROC. IEE, Vol. 117, No. 2, FEBRUARY 1970

e —

